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We propose a way of producing and detecting pseudospin entanglement between electrons and holes in
graphene. Electron-hole pairs are produced by a fluctuating potential and their entanglement is demonstrated by
a current correlation measurement. The chirality of electrons in graphene facilitates a well-controlled Bell test
with �pseudo-�spin projection angles defined in real space.
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I. INTRODUCTION

The entanglement between internal degrees of freedom of
an electron and a hole in the Fermi sea is of both fundamen-
tal and practical interest. It has been recognized as a form of
entanglement that does not require many-body interactions1

and comparatively simple ways of generating it experimen-
tally have been proposed.1,2 Yet, the experimental demonstra-
tion of electron-hole entanglement in solid-state structures is
still outstanding.

Very recently Neder et al.3 have implemented a quantum
Hall interferometer that had been proposed2 for the genera-
tion and detection of electron-hole entanglement. This inter-
ferometer has allowed the observation of the “two-particle
interference” that is at the core of electron-hole
entanglement.3 While this is a first indication of entangle-
ment production in the experiment of Neder et al., a conclu-
sive verification of that entanglement has not yet been
achieved. It has been proposed1,2,4,5 that the generated en-
tanglement is best verified through the violation of a Bell
inequality—an inequality between correlators of spin de-
grees of freedom whose violation is an unambiguous signa-
ture of entanglement and contradicts a classical intuition
called “local realism.” Experimentally, the demonstration of
such a violation, however, meets with significant challenges.
First, the decoherence in the interferometer of Ref. 3 needs to
be reduced significantly in order to safely preserve the en-
tanglement from the time of its production to its detection. In
addition, a test of Bell inequalities requires measurements of
spin-1/2 degrees of freedom along variable quantization
axes. In the setup of Ref. 3 these quantization axes are de-
fined by scattering amplitudes that are poorly controlled ex-
perimentally, requiring an implementation through trial and
error.

In this paper we put forward a theoretical proposal for the
generation and detection of electron-hole entanglement that
does not suffer from the above mentioned problems. We pro-
pose to entangle the pseudospin7 degree of freedom of elec-
trons and holes in graphene8–10 by means of the “pumping”
mechanism of Refs. 11 and 12. The typical energy scales in
graphene are considerably higher than those in GaAs, which
has for instance allowed an observation of the quantum Hall
effect at room temperature.13 At comparable temperatures
one thus expects the decoherence in graphene to be much
weaker than in the experiment of Ref. 3, addressing the first
of the above issues. We show below that entanglement in

graphene should be observable at temperatures at least an
order of magnitude higher than those in the experiment of
Ref. 3.

In addition, we formulate a Bell test through current cor-
relation measurements that overcomes the mentioned prob-
lems of previously pursued entanglement detection
schemes.1,2,4,5 Electrons in graphene have a definite chirality
�for a certain band-structure “valley”�, moving in the direc-
tion of their pseudospin. The pseudospin of an excitation can
thus be measured through its direction of motion. This af-
fords a Bell test with straightforward and transparent control
of the �pseudo�spin-quantization axes that are now defined in
real space. The Bell test proposed in Refs. 1, 2, 4, and 5 is
only valid in the regime of temperatures T that are low com-
pared to the voltage V applied to the interferometer: kT
�eV. Its application at finite temperatures faces a problem
that has been discussed recently in Ref. 6. The authors of
Ref. 6 suggest a cure of that issue whose experimental imple-
mentation, however, is challenging; it requires the addition
of resonant levels to the setup. Here we avoid the problem
pointed out in Ref. 6 by a suitable postselection of the en-
tangled electron-hole pairs. That selection is implemented
simply by subtracting the thermal background from all mea-
sured current correlators.

This proposal thus avoids some of the main difficulties of
previous attempts to generate electron-hole entanglement.
The more challenging requirements in the present proposal
are a relatively localized infrared light source and a ballistic
graphene sample.

II. SETUP

We consider a sheet of ballistic graphene at low tempera-
ture T and nonzero Fermi energy �F�kT in a vanishing mag-
netic field B. The sheet is well coupled to an electron reser-
voir along its rim, as shown in Fig. 1. We formulate the
low-energy Hamiltonian of graphene in single-valley form
through a unitary transformation that renders the Dirac
model valley isotropic,14

H0 = v� · p . �1�

Here, �= ��x ,�y� is a vector of Pauli matrices in pseudospin
space, p is the electron momentum, and v is the Fermi ve-
locity. The graphene sheet is subject to a local fluctuating
potential, as described by the Hamiltonian,
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Hex�t� =� dxu�x�eVex�t��� †�x� · �� �x� . �2�

Here we have switched to second-quantized notation

with electron annihilation operators �� that are vectors in
pseudospin space. The fluctuating potential is focused on a
small region of spatial extent lex in the middle of the
graphene sheet and it is centered around the origin of our
coordinate system. Its shape is given by a function u that
is normalized to kF

2�dxu�x�=1 �for instance u�x�=exp
��−�x�2 /2lex

2 � /2�kF
2lex

2 �. The length lex is assumed to be large
compared to the lattice spacing llattice, but small compared to
the Fermi wavelength 2� /kF �which, in a clean system, can
be chosen at will by tuning the Fermi energy�, that is llattice
� lex�2� /kF. We assume that the frequency spectrum of the
potential correlator cV�−	�=�dt exp�−i	t��Vex�t�Vex�0�	 is
relatively flat until it vanishes above a high-frequency cutoff
	

 with kT�
��F.11,12,15 The fluctuating potential Vex
creates pairs of electrons and holes �in the sense of an elec-
tron missing in an otherwise filled Fermi sea� that propagate
outward before they are reflectionlessly drained by the res-
ervoir surrounding the graphene sheet. On their way to the
rim they are able to leave through tunnel contacts � with
sizes l��r� into additional electron reservoirs at locations
x=r��̂, where ��̂�=1 and r��2� /kF �see Fig. 1�,

HT,� =� dx�� †�x� · �w�
A�x�

w�
B�x�

���
res + H.c. �3�

�Ref. 16�. Here, the functions w� � are centered around x
=r��̂ and the operator ��

res annihilates electrons in the reser-
voir of contact �. All electron reservoirs are in thermal equi-
librium with the graphene sheet. Every tunnel contact � has
one counterpart −� in direction −�̂.

III. ENTANGLEMENT PRODUCTION

We first consider the excitations created by a short poten-
tial pulse, eVex�t�=��t− tex�. In first-quantized form the low-
energy contribution ��p−p���kF� to the electron-hole pair
that is produced at first order in � reads �we set �=1�,

���t�	��t=tex+0+ = �
pp�

�p	el�p�	h��↑	el�↑	h + �↓	el�↓	h� , �4�

where ↑ and ↓ specify the pseudospin direction and � 	el and
� 	h are electron and hole amplitudes, respectively �with the
convention that a hole has the same pseudospin as the elec-
tron that it replaces�. The pseudospins of the electron and the
hole described by ��	� �Eq. �4�� are entangled. They form a
so-called Bell pair. A source with a periodically varying po-
tential Vex�t� serves as a steady supply of such Bell pairs.
Excitations that appear at higher order in � are negligible if
�eVex�t����F for all t, which we assume henceforth �this is
not realizable for the sharply peaked time dependence chosen
for the illustrative argument above, but it can be achieved for
any realistic oscillatory time dependence�.

IV. ENTANGLEMENT DETECTION

The Heisenberg equations of motion corresponding to the
Hamiltonian H0, Eq. �1�,

ṗ = 0, �̇ = 2vp � �, ẋ = v� , �5�

show that the pseudospin of an electron is not conserved.
We therefore postselect orbital states of the form �p	�
= ��p�̂	+ �−p�̂	� /�2. The initial wave function ��	� �Eq. �4��
factorizes into an isotropic orbital part and a pseudospin part.
It follows that at t= tex also the pseudospin state of all post-
selected electron-hole pairs is given by the pseudospin part
of Eq. �4� and entangled. Moreover, the �un-normalized� den-
sity matrix of a postselected electron �pp�

� = �p����p�	�,
� being the density matrix of the electron before post-
selection, takes the form �pp�

� �t�=cos�2vp�t− tex��cos�2vp�
��t− tex���pp�

� �tex�. After normalization �� is time indepen-
dent. The pseudospins of the postselected excitations are thus
conserved and so is their entanglement. We propose to verify
that entanglement by violation of a Bell inequality. This re-
quires a measurement of the postselected pseudospins with
variable quantization axes. The tunnel contacts � serve that
purpose. To see this we integrate Eq. �5� to find

x�t� = x�tex� + v�t − tex�
�p�tex� · ��tex��p�tex�

�p�tex��2
+ O� 1

�p�� .

�6�

Consider an electron �before postselection� that is produced
at t= tex and �x�tex�	=0, such that semiclassically the first
term in Eq. �6� vanishes. The third, oscillatory term in Eq.
�6� is smaller than the second one by a factor �kFr��−1 and
negligible in our limit. Assume that this electron is detected
in contact � at time t, such that x�t�=r��̂. This projects the
initial state of the electron onto eigenstates of x�t� �Eq. �6��
with eigenvalue r��̂. To our accuracy, when only the second

−b

Vex

a'

bb'

−a'

a

−a
−b'

FIG. 1. �Color online� Proposed setup: a localized fluctuating
electric potential Vex produces entangled electron-hole pairs in the
center of a graphene sheet. The excitations are either drained at the
rim of the sheet or leave into tunnel contacts at locations r��̂
�where � takes the values �a, �a�, �b, or �b��. The generated
entanglement has signatures in correlations between the currents
into these tunnel contacts. The starlike setup that is shown allows
the maximal violation of a Bell inequality.
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term in Eq. �6� is relevant, such a measurement projects onto
amplitudes with p � �̂. Moreover, substituting p�tex� / �p�tex��
= �̂ into Eq. �6� �the sign of p�tex� is arbitrary since in enters
quadratically�, we see that a measurement of an electron in
contact � projects onto amplitudes with ��tex� · �̂=1. Like-
wise, detection of an electron in contact −� projects onto
amplitudes with ��tex� · �̂=−1.17 We conclude that the tunnel
contacts � collect currents I� of electrons and holes with a
definite initial pseudospin when measured along quantization
axes �̂ that are defined by the locations of the contacts � in
real space, as illustrated in Fig. 2. As discussed above, the
initial pseudospin state of the created electron-hole pairs be-
fore postselection equals the pseudospin state of any of the
postselected electron-hole pairs. Also the pseudospin of the
postselected pseudospins may thus be inferred from a mea-
surement of the currents I�.

In order to demonstrate the entanglement of the postse-
lected electron-hole pairs we formulate a slightly modified
Clauser-Horne-Shimony-Holt inequality,

B � 2 with B = Cab + Ca�b + Cab� − Ca�b�, �7�

in terms of symmetrized correlators,

Cab =
1

2
����â · �el��b̂ · �h� + �b̂ · �el��â · �h���	 , �8�

of an electron pseudospin �el and a hole pseudospin �h,

projected onto the unit vectors â and b̂. Only entangled
electron-hole pairs can violate the inequality �7� and the pa-
rameter B is thus an “entanglement witness.”18

At zero temperature and in our limit of dilute electron-
hole pairs �eVex���F one shows along the lines of Refs. 4
and 5 that the parameter Cab can be expressed through zero-
frequency current correlators. One needs to correlate the cur-
rents of electrons and holes with definite pseudospins when

measured along the quantization axes â and b̂, respectively.
The reasoning of the paragraph around Eq. �6� allows us to
relate these currents to the tunnel currents I�a and I�b into
the contacts �= �a and �= �b. In case all tunnel contacts
couple with the same strength to the relevant electrons or
holes one concludes in this way that4,5

Cab =
�,��=�1

���c�a,��b

�,��=�1
c�a,��b

, �9�

where c̃a,b=�dt�Ia�t�Ib�0�	 has to be substituted for ca,b.
Unlike in the proposals of Refs. 1 and 2, here not every
produced electron-hole pair is detected. To find ca,b in the
general case, when the tunnel coupling strengths to different
reservoirs � are not equal, one therefore has to normalize the
correlators c̃a,b by the detection probabilities W�,

ca,b = �WaWb�−1� dt��Ia�t�Ib	 − �Ia�t�Ib	Vex=0� .

�10�

The probabilities W� can be measured through the ac re-
sponse of the currents I� to the excitation potential Vex at
frequencies 	�min�v / l� ,�F�,

W� = ��F

	
�� I��	�

e2Vex�	�
� . �11�

Extra care has to be taken at finite temperature. We avoid
the issue pointed out in Ref. 6 here by an additional postse-
lection of the electron-hole pairs for which Eq. �7� is evalu-
ated �see Appendix A for the details�. This selection is made
by the subtraction of the equilibrium current correlations in
Eq. �10�. We show in Appendix A that after that subtraction
a violation of the Bell inequality �Eq. �7�� is an unambiguous
signature of entanglement also at finite temperature, as long

as v / �raâ�rbb̂��kT�
.

V. PREDICTIONS

In our limit of small w� � �that is tunneling contacts�,
v / �raâ�rbb̂��kT�
��F, �eVex���F, lex�2� /kF, and l�
�r� we find �see Appendix B�

ca,b =
e4

2�F
2 �1 + â · b̂��

−�

�F

d��
�F

�

d��cV�� − ��� . �12�

We conclude that the pseudospin correlators measured
through Eqs. �9� and �10� take the form

Cab = â · b̂ , �13�

which is immediately shown to violate the modified CHSH
inequality �Eq. �7�� for appropriate choices of the vectors â,

â�, b̂, and b̂�. The maximal violation B=2�2 for instance can
be achieved in the symmetric starlike setup shown in Fig. 1,

where the vectors â�, b̂, â, and b̂� are separated by successive
45° angles.

For Eq. �13� to hold the created excitations must
not change their pseudospin on the way to the tunnel con-
tacts, for instance through decoherence. We thus assume ex-
citation energies such that the inelastic mean-free path lin
is long, lin�r�. This condition is fulfilled at 

�min�vphkF ,�F /�kFr��, where vph is the phonon velocity in
graphene.19,20 As anticipated, for suitable parameter values
decoherence through inelastic processes in our proposal is

I

σ−σ −α α

Vex
I−α α

FIG. 2. �Color online� Pseudospin measurement: electron and
hole excitations are generated by Vex at x=0. They contribute to the
current I� into contact � at x=r��̂ if their velocity satisfies ẋ � �̂.
The pseudospin � of these excitations is fixed due to their chirality:
one has � � ẋ and � thus points “up” along the quantization axis �̂.
The opposing contact −� at x=−r��̂ collects excitations with pseu-
dospin “down” along the same axis.
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already suppressed at energy scales much higher than those
in the experiment of Ref. 3; for a Fermi wavelength of 50 nm
�corresponding to a Fermi energy of �F
0.1 eV� we find
that coherence is maintained for excitation energies of up to

�1 meV at r��1 mm �limited by phonon scattering�.
The experiment of Ref. 3, in contrast, was performed at en-
ergies of 
10 �eV. We need in addition that also the elastic
mean-free path lel is long, lel�r�. Long elastic mean-free
paths have been found in suspended sheets of graphene.21 We
conclude that the setup depicted in Fig. 1 allows to generate
and conclusively demonstrate electron-hole entanglement if

min�vphkF ,�F /�kFr���
�kT�v / �raâ�rbb̂�.

VI. DISCUSSION

We have proposed a way of creating and verifying pseu-
dospin entanglement of electron-hole pairs in graphene. Bell
pairs are produced by a fluctuating potential and their en-
tanglement is demonstrated after postselection through vio-
lation of a Bell inequality. The quantization axes in the req-
uisite pseudospin measurement are defined by the locations
of tunnel contacts in real space. This simplicity of the pseu-
dospin measurement is bought at a price: the postselected
Bell pairs are not easily separated spatially since the advo-
cated pseudospin measurement is nonlocal, as shown in Fig.
2. The produced Bell pairs, however, are entangled also with
respect to their intrinsic spins,22 which entanglement is
readily spatially separated.11,12 The proposed experiment is
thus an intermediate step toward the generation and manipu-
lation of spatially separated Bell pairs in electronic struc-
tures. Entanglement is generated by a mechanism that is able
to produce spatially separated Bell pairs, but it is detected
before that spatial separation is achieved.23 The proposed
detection mechanism affords three major advantages: �i� it
suffers less from decoherence than previously pursued
implementations of particle-hole entanglement; �ii� it allows
a well-controlled Bell test with clearly defined �pseudo�spin-
quantization axes; �iii� it avoids problems with earlier pro-
posals of electron-hole entanglement detection at finite tem-
perature. Our proposal thus overcomes some critical hurdles
on the way to an observation of particle-hole entanglement in
electronic structures.
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APPENDIX A: BELL TEST

The relation between current correlations and the �pseu-
do�spin correlator Cab �Eq. �9�� has been proven in Refs. 4
and 5 at zero temperature in the limit of dilute electron-hole
pairs �in the system discussed here that is �eVex���F�. It has
been pointed out recently6 that extra care has to be taken at
finite temperature. Thermal excitations in the reservoirs that
collect the measured currents are then able to generate elec-
tron and hole currents that flow in the “wrong” direction:
from the reservoirs into the system that contains the en-

tangled electron-hole pairs. These currents pose a serious
problem and they can invalidate a Bell test along the lines of
Refs. 4 and 5 at finite temperature. In Ref. 6 an alternative,
energy-selective detection scheme has been proposed that
does not suffer from the same problem. Experimental imple-
mentations of energy-resolved detection, for instance
through resonant levels,26 are, however, expensive. In con-
trast to the situation studied in Ref. 6 the entangled electrons
and holes in our proposal differ in energy. This affords a
simpler cure of the problem.

The typical energy separation between the electron and
the hole in the produced Bell pairs is 
. This allows us to
restrict our attention by means of postselection to electron-
hole pairs with electron energies ���F+	 and hole energies
�̄��F−	, where we choose kT�	�
. Thermally acti-
vated electron-hole pairs in the graphene sheet and the res-
ervoirs coupled to it have typical energies ��−�F� , ��̄−�F�

kT. All but an exponentially suppressed number of them
are excluded by the above postselection. This avoids the
problem that has been pointed out in Ref. 6. At the same time
our postselection includes almost all excitations created by
Vex that have typical energies ��−�F� , ��̄−�F�

. The above
postselection may thus be implemented approximately by
subtracting the statistical �thermal� contributions from all
measured current correlators, leaving only correlations due
to Vex. These thermal correlations, in turn, may be inferred
from a measurement of the respective correlators in equilib-
rium, at Vex=0. The above postselection should thus solve
the problem pointed out in Ref. 6 with very moderate addi-
tional experimental effort: it is implemented by a second
measurement in thermal equilibrium, as expressed in Eq.
�10�. Below we prove this expectation correct.

The two-particle density matrix after our postselection of
electron-hole pairs in the conduction band with symmetrized
orbital states �p	�

el and �p̄	�̄
h for electron and hole, respectively,

at electron momenta p� ��F+	� /v and hole momenta
p̄� ��F−	� /v reads

���̄,���̄�
el−h��̄ �p, p̄;p�, p̄�� � ��vp − �F − 	����F − 	 − vp̄�

���vp� − �F − 	����F − 	 − vp̄��

��p��
el���el�p̄��̄

h��̄�h�cond

��p�	�
el���	el�p̄�	�̄

h ��̄�	h, �A1�

���x�=1 for x�0 and ��x�=0 otherwise�, where the pseu-
dospins of the electron and the hole are denoted � and �̄,
respectively. �cond is the density matrix of all electron-hole
pairs in the conduction band of the graphene sheet �before
postselection�. Of all momentum-restricted electron-hole
pairs we then select those whose electron and hole are found
within a radial distance �r− r̄���r of each other �in real
space�, as described by the reduced density matrix,

���̄,���̄�
spin

� �
0

R

drdr̄e−�r − r̄�2/2�r2
�̃��̄,���̄�

el−h��̄ �r, r̄;r, r̄� . �A2�

Here, �̃el−h is the Fourier transform of �el−h �with the sign
convention of Eq. �A5�� and R is the radius of the graphene
sheet. As explained in the main text, �el−h��̄ is independent of
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�̂ and �̂ for the state �� �Eq. �4��. We have therefore sup-
pressed these indices of �spin. For the proposed Bell test one
needs to measure the pseudospin correlators Cab �Eq. �8��
evaluated for the postselected electron-hole pairs. They fol-
low from

Cab
↑ =

1

4
Tr �spin�1 + â · �el��1 + b̂ · �h� �A3�

as Cab=Cab
↑ +Cba

↑ −C−ab
↑ −Cb−a

↑ −Ca−b
↑ −C−ba

↑ +C−a−b
↑ +C−b−a

↑ .
We assume 
�v /�r�max�
�eVex /�F�2 ,kT��F /eVex�2

��kT /
�exp�−2	 /kT��. In this limit it is very unlikely for
two holes to be within a distance �r of the same electron �or
vice versa�. The correlators Cab

↑ may then be measured by
“coincidence detection,4,5” correlating momentum-projected
electron and hole pseudospin densities,

Cab
↑ �

0

R

drdr̄e−�r − r̄�2/2�r2
�na

↑el�r�nb
↑h�r̄�	 . �A4�

Here, the densities n↑el and n↑h are defined in terms of the
momentum-projected electron annihilation operators,

�� �
��r� = �

0

� dp

2�
eipr�����vp − �F� − 	� 

�=�1
P��̂�

�
�p�̂,

�A5�

as n�
↑��r�= ��� �

�†�r� ·v��
↑��v��

↑† ·�� �
��r��. The index � takes the

values el or h and we have introduced �el=1 and �h=−1. The
vectors v�

↑ are the spinors corresponding to pseudospin up
along the directions �̂ and the pseudospin matrix Pp projects
onto the conduction band. Note that at this point the choice
of momentum direction of the postselected excitations is ar-
bitrary: in the state �4� amplitudes with any momentum have
the same pseudospin. Our above choice of momenta along
the desired pseudospin quantization axis �̂ has been made
merely for convenience. In our limit, when all electron-hole
pairs are well separated from each other �much farther than
�r�, the density correlator of Eq. �A4� may be replaced by its
irreducible contribution

Cab
↑ � �

0

R

drdr̄e−�r − r̄�2/2�r2
�na

↑el�r�nb
↑h�r̄�	 �A6�

�Refs. 4 and 5�. The momentum-projected density n�
� is in

principle experimentally accessible, for instance by tunneling
electrons and holes into additional reservoirs that couple
symmetrically to two contacts � and −� via momentum-
dependent tunnel amplitudes w�

el and w�
h . Pseudospin-

resolved amplitudes w�, as described by the tunneling
Hamiltonian HT�

el +HT�
h with

HT�
� =� drw�

��r��� �
�†�r� · �� �

res� + H.c., �A7�

then allow to obtain the correlator Cab
↑ as

Cab
↑ � cab

↑el−h + O�e−	/kT� �A8�

from current correlators,

cab
↑el−h =� dte−�vt�2/2�r2

�Ia
↑el�t�Ib

↑h�0�	 , �A9�

where

I�
↑� = ie� drw�

��r���� �
�†�r� · v��

↑��v��
↑† · �� �

res�� + H.c.

�A10�

We have introduced one reservoir for every pseudospin state,
with corresponding electron annihilation operators ���

res�. The
amplitudes w�

� are peaked at the radii r�
�. In the step from Eq.

�A6�–�A8� we have assumed time-translational invariance
and r�

el=r�
h . Note that the error due to thermal excitations

flowing from the reservoirs into the graphene sheet �the ori-
gin of the problem pointed out in Ref. 6� is here exponen-
tially suppressed. It is of order exp�−	 /kT� since it is only
pairs of excitations that differ in energy by at least 	 that
contribute to the correlator c↑el−h.

The correlator Cab
↑ , however, may be accessed also

through measurements of correlators,

cab
↑ =� dte−�vt�2/2�r2

�Ia
↑�t�Ib

↑�0�	 , �A11�

of currents,

I�
↑ = ie� drw��r���� �

†�r� · v��
↑��v��

↑† · �� �
res� + H.c., �A12�

without energy selectivity, where �� ��r�
=�0

� dp
2�exp�ipr��=�1P��̂�

�
�p�̂ �and a corresponding tunnel-

ing Hamiltonian HT��. This is seen easiest by separating two
contributions to the above current correlators from each
other; first there are contributions due to the electron-hole
pairs created by Vex. We denote these contributions to c↑el−h

and c↑ by a subscript “ex,” cex
↑el−h and cex

↑ , respectively. Sec-
ond, there are contributions from statistical correlations of
excitations due to the Pauli principle, denoted by a subscript
“stat,” cstat

↑el−h and cstat
↑ . We have c↑=cex

↑ +cstat
↑ and likewise

c↑el−h=cex
↑el−h+cstat

↑el−h. The typical energy separation between
the electrons and the holes created by Vex is vp−vp̄

. For
the currents Iex�

↑ carried by these excitations we thus may
approximate Iex�

↑ = Iex�
↑el + Iex�

↑h +O�	 /
� and cexab
↑ =cexab

↑el−h

+cexba
↑el−h+O�	 /
�. Under the assumption kT�v / �ra

�â�rb
�b̂�

made in the main text the statistical correlations cstat
↑ are iden-

tical to the equilibrium correlations, cstat
↑ =c↑ �Vex=0

+O�kT exp�−kT�ra
�â�rb

�b̂� /v�� �see Appendix B�. Moreover,
statistical fluctuations do not contribute to the momentum-

projected correlator by our definition of ���:
����

el†�r , t������
h �r� , t��	=0. We conclude that to leading order

in our limit the momentum-projected irreducible current cor-
relator c↑el−h may be expressed through the corresponding
correlator without momentum projection after subtraction of
its statistical background, cab

↑el−h+cba
↑el−h=cexab

↑el−h+cexba
↑el−h=cexab

↑

=cab
↑ −cab

↑ �Vex=0, such that
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Cab
↑ + Cba

↑ � cab − cab�Vex=0. �A13�

The pseudospin-resolved tunneling amplitudes assumed
above are rather unrealistic. Alternatively the pseudospin
currents I�

↑ can be measured by introducing separate reser-
voirs for the contacts � and −�, as explained after Eq. �6� of
the main text. One further shows straightforwardly along the
lines of Refs. 4 and 5 that the correlators c, Eq. �A11� may be
replaced by zero-frequency correlators �with an error of
O�v /
�r��. Equations �9� and �10� then follow after a nor-
malization of C↑ along the lines of Refs. 4 and 5. Values for
	 and �r that satisfy all of the above conditions can be
found provided that kT�
. A violation of the inequality �7�
with the correlators Eqs. �9� and �10� is thus indeed an en-

tanglement witness to leading order in v / �ra
�â�rb

�b̂��kT
�
.

Strictly speaking, a Bell test has to demonstrate that a
violation of Eq. �7� found through the current correlation
measurement described above is due to the entanglement of
�spin rather than the deviations of the true pseudospin corr-
elators from Eq. �9� that appear at nonzero temperature �even
though those are suppressed in our limit�. Collecting all the
sources of such deviations mentioned above we find that the
Bell parameter B measured through Eq. �9� is related to the
Bell parameter Bspin corresponding to the actual pseudospin
correlators Eqs. �8� and �A3� as

B = Bspin�	,�r� + g1
	



+ g2

v

�r

+ g3

�r

v
� eVex

�F
�2

+ g4
kT�r

v

kT



� �F

eVex
�2

e−2	/kT

+ 
���

g���
kT



� �F

eVex
�2

e−kT�r��̂−r���̂��/v, �A14�

up to terms of higher order in small quantities, with positive
constants gj and g��� that are of order unity. The summation
in Eq. �A14� runs over all measured combinations of tunnel
contacts � and ��. Entanglement is conclusively demon-
strated if one finds a violation of the inequality Bspin�2, that
is if

B � 2 + g1
	



+ g2

v

�r

+ g3

�r

v
� eVex

�F
�2

+ g4
kT�r

v

kT



� �F

eVex
�2

e−2	/kT

+ 
���

g���
kT



� �F

eVex
�2

e−kT�r��̂−r���̂��/v. �A15�

A direct violation of Eq. �A15� requires knowledge of the
parameters gj and g���. They can in principle be determined
if the frequency spectrum of the voltage correlator cV is
known. More practically, however, one may measure the de-
pendence of B on parameters such as T and Vex and establish
an inconsistency with Eq. �A15� for a particular choice of 	
and �r. For example, one may choose 	=�kT
 and �r
=�Fv /
eVex, such that

B = Bspin��kT
,�Fv/
eVex� + g1�kT



+ �g2 + g3�

eVex

�F

+ g4� kT



�2� �F

eVex
�3

e−2�
/kT

+ 
���

g���
kT



� �F

eVex
�2

e−kT�r��̂−r���̂��/v. �A16�

An analysis of �spin, Eqs. �A1� and �A2�, shows for the same
choice of 	 and �r,

Bspin��kT
,�Fv/
eVex�

= Bspin��kT0
,�Fv/
eV0� + g̃1��kT



−�kT0



�

+ g̃3� eVex

�F
−

eV0

�F
� + g̃4�� kT



�2� �F

eVex
�3

e−2�
/kT

− � kT0



�2� �F

eV0
�3

e−2�
/kT0� , �A17�

up to terms of higher order in small quantities, with positive
constants g̃j that are of order unity. Suppose that with this
choice of 	 and �r one measures a parameter B−2�0 that
varies only by a small fraction �B / �B−2��1 over a range
of temperatures T� �T0 ,2T0� and potentials �Vex�
� �V0 ,2V0� �V0�0�. Equations �A16� and �A17� prove this
measurement result to be inconsistent with the assumption
that no entanglement is present in the electron-hole pairs
measured at T0 and V0. It excludes that
Bspin��kT0
 ,�Fv /
eV0��2 �note that according to Eqs.
�A16� and �A17� all T- and Vex-independent contributions to
B have a negative sign�. The result B−2�0 with variation
�B / �B−2��1 over the above parameter range, however, is
predicted to be found in the presence of entanglement �for
appropriate choices of the pseudospin projection directions
such as shown in Fig. 1�. In such a measurement the gener-
ated entanglement can thus be verified conclusively.

APPENDIX B: CURRENT CORRELATORS

In this appendix we obtain the correlators c̃ab
=�dt�Ia�t�Ib�0�	 from the Hamiltonian H=H0+Hex
+�HT,�. Lowest order perturbation theory in w� and Vex re-
sults in

cab
�0� = −

e4

2
� dxadxa�dxbdxb�

d�

2�

d��

2�
Tr ǧ�xb� − xa,��

���̌z,Ǧa����W̌a�xa,xa��ǧ�xa� − xb,���

���̌z,Ǧb����W̌b�xb,xb�� , �B1�

describing statistical correlations. Here, ǧ and Ǧ�, are the
Green’s functions of electrons in the graphene sheet and in
reservoir �, respectively, and �,� denotes the matrix commu-
tator. They are matrices with Keldysh27 and pseudospin in-
dices. We expand the Green’s functions ǧ�x� asymptotically
assuming kF�x��1,28 as it is appropriate in our limit kFr�
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�1. The matrix �̌z is the third Pauli matrix in Keldysh space

and the unit matrix in pseudospin space, while W̌� is unity in
Keldysh space and

W̌��x�,x��� = �w�
A�x��w�

A��x��� w�
A�x��w�

B��x���
w�

B�x��w�
A��x��� w�

B�x��w�
B��x���

� �B2�

in pseudospin space.
At the next to leading �second� order in Vex we find a

contribution,

cab
�2�ex = −

e4

2
� dxadxa�dxbdxb�dxexdxex�

d�

2�

d��

2�
cV�� − ���

�u�xex�u�xex� �Tr ǧ�xb� − xex,���̌zǧ�xex − xa,���

���̌z,Ǧa�����W̌a�xa,xa��ǧ�xa� − xex� ,����̌zǧ�xex� − xb,��

���̌z,Ǧb����W̌b�xb,xb�� , �B3�

due to electron-hole pairs excited by the fluctuating potential
Vex and a contribution,

cab
�2�stat = −

e4

2
� dxadxa�dxbdxb�dxexdxex�

d�

2�

d��

2�
cV�� − ���

�u�xex�u�xex� �Tr�ǧ�xb� − xex,���̌z

�ǧ�xex − xex� ,����̌zǧ�xex� − xa,��

���̌z,Ǧa����W̌a�xa,xa��ǧ�xa� − xb,��

���̌z,Ǧb����W̌b�xb,xb�� + ǧ�xb� − xa,��

���̌z,Ǧa����W̌a�xa,xa��ǧ�xa� − xex,���̌z

�ǧ�xex − xex� ,����̌zǧ�xex� − xb,��

���̌z,Ǧb����W̌b�xb,xb��� , �B4�

which describes statistical correlations due to a renormaliza-
tion of the tunneling amplitudes w� by Vex.

To lowest order in our limit 
��F and lex , l�� �r�� we
have w�

��x�= �v /�kF�w̄�
��x−r��̂� and u�x�=�x� /kF

2. Equa-
tion �B3� then evaluates to

c̃a,b
�2�ex =

e4

2�F
2 �1 + â · b̂�WaWb�

−�

�F

d��
�F

�

d��cV�� − ��� ,

�B5�

with the tunneling probabilities,

W� = �F
�w̄�

A�2 + �w̄�
B�2 − 2�w̄�

Aw̄�
B��cos ��,sin ��� · �̂

4�2v�kF
2r�

,

�B6�

where ��= i ln�w̄�
Aw̄�

B� / �w̄�
Aw̄�

B�� and v� is the Fermi velocity
in reservoir �. The above perturbation expansion in w� is
justified if w̄�1.

The contribution c�2�stat �Eq. �B4�� is exponentially sup-

pressed as exp�−kT�raâ�rbb̂� /v� by thermal dephasing in the

limit kT�v / �raâ�rbb̂� taken in the main text. After the sub-
traction of the statistical fluctuations c�0� and the normaliza-
tion performed in Eq. �10� the correlator ca,b takes the form
of Eq. �12� to this accuracy. Similarly we obtain for the ac
current into tunnel contact �,

I��	� = ie2Vex�	�� dx�dx��dxex
d�

2�
u�xex�

�Tr ǧ�x�� − xex,���̌zǧ�xex − x�,� − 	�

���̌zǦ���� − Ǧ��� − 	��̌z�W̌��x�,x��� , �B7�

which implies Eq. �11� in our limit.
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